

Please sign up so we get more fika!

Michael Korsmeier 2023/05/12

Why we are looking at Antimatter to learn more about Dark Matter

Dark Matter

Cosmic Rays

Antimatter

Dark Matter

Cosmic Rays

Antimatter

Gravitational evidence at various scales is overwhelming.

Gravitational evidence at various scales is overwhelming.

Gravitational evidence at various scales is overwhelming.

Gravitational evidence at various

The nature of dark matter remains unknown!

Gravitational evidence at various

Dark Matter Search

Michael Korsmeier - 2023/05/12

Primordial black holes

Dark Matter Search

- Mass range 1 GeV to 100 TeV
- Various search strategies
- We focus on indirect detection with cosmic rays and γ-rays

Michael Korsmeier - 2023/05/12

Primordial black holes

Dark Matter Search

- Mass range 1 GeV to 100 TeV
- Various search strategies
- We focus on indirect detection with cosmic rays and γ-rays

Michael Korsmeier - 2023/05/12

Primordial black holes

MDM [GeV]

What's special about WIMPs?

Properties of Dark Matter

- Cold
- Neutral
- Stable
- Small self-interaction
- Match relic density
- Compatible with bounds from:
 - collider searches
 - direct detection
 - astrophysics/cosmology

Energy content of the Universe today

Numbers from: [Planck coll.; Astron.Astrophys. 594; 2016]

Dark Matter

Cosmic Rays

Antimatter

A brief History of Cosmic-Ray Physics

Radiation	Theodor Wulff	1909
Radiation e	Domenico Pacini	1911
lonization ra Balloon flights up	Victor Hess	1912
Latitude de	Arthur Compton	1932
Discov	Carl Anderson	1932
Disco	Anderson & Neddermeyer	1937
Discover	Lattes, Occhialini, Moorhead & Powell	1947

increase - Eiffel Tower

decreases under water

ate increases with altitude to 5 km — Nobel Prize in 1936

pendence of cosmic rays

very of the **positron**

overy of the **muon**

ry of the **charge pions**

[Wikipedia]

Michael Korsmeier - 2023/05/12

Michael Korsmeier - 2023/05/12

Michael Korsmeier - 2023/05/12

Michael Korsmeier - 2023/05/12

Acceleration Mechanism

Acceleration Mechanism

- Shock fronts are observed at SNRs
- CRs accelerated by SNRs are called primaries
- Dominat CRs: p, He, CNO

Primary and Secondary Cosmic Rays

Primary and Secondary Cosmic Rays

Heavier Stars

Gamma ray γ Neutrino ν [Wikipedia]

- The secondaries (like Li, Be, and B) are not produced by nuclear fusion in stars
- Secondaries are produced during CR propagation

Michael Korsmeier - 2023/05/12

P

Gramage

Gramage

The Leaky Box Model

	Production	Loss by Escape	Loss by Interaction	Loss Dec
⁹ Be				>
¹⁰ Be				

The Leaky Box Model

	Production	Loss by Escape	Loss by Interaction	Loss Dec
⁹ Be				>
¹⁰ Be				

CRs spend a significant time outside the Galactic disc!

Modeling Cosmic-Ray Propagation

FERMI SHOCK ACCELERATION

Diffusion Equation of Cosmic Rays

$$\begin{aligned} \frac{d\psi_i}{dt} &= q_i(x, p) \\ &+ \nabla D_{xx} \nabla \psi_i \\ &- \nabla V \psi_i + \frac{\partial}{\partial p} \left(\frac{p}{3} \nabla \cdot V \psi_i\right) \\ &- \frac{\partial}{\partial p} \left(\frac{dp}{dt} \psi_i\right) \\ &- \frac{\psi_i}{\tau_f} - \frac{\psi_i}{\tau_r} \\ &+ \frac{\partial}{\partial p} p^2 D_{pp} \frac{\partial}{\partial p} \frac{1}{p^2} \psi_i \end{aligned}$$

Michael Korsmeier - 2023/05/12

Source term

Diffusion

Convection

Energy losses

Fragmentation and decay

Reacceleration

Secondary-to-Primary ratios constrain propagation

Cosmic-Ray Clocks constrain the Halo Size

Dark Matter

Cosmic Rays

Antimatter

E

DM limit for DM annihilation into a pair of b quarks

Michael Korsmeier - 2023/05/12

[Balan, MK, et al. 2023]

DM limit for DM annihilation into a pair of b quarks

Michael Korsmeier - 2023/05/12

[Balan, MK, et al. 2023]

DM limit for DM annihilation into a pair of b quarks

Michael Korsmeier - 2023/05/12

pbarlike

[Balan, MK, et al. 2023]

DM

- · Production by coalescence
- No low-energy suppression (annihilation at rest)

GAPS detector concept

Predicted Antideuteron flux

Possible Dark Matter Antideuteron flux for GAPS

Predicted antihelium flux

Thank you for your attention!

Backup

DM

P

Gramage

Gramage

$$X = \ell \cdot \rho$$

$$\frac{dN_{\rm C}}{dX} = -\frac{\sigma_{\rm inel,C}}{m_p}N_{\rm C}$$

Gramage

$$X = \ell \cdot \rho$$

$$N_{\rm C} = N_0 \exp\left(-\frac{\sigma_{\rm inel,C}}{m_p}X\right)$$

$$\frac{N_{\rm B}}{N_{\rm C}} = \frac{\sigma_{\rm C \to B}}{\sigma_{\rm inel, \rm C} - \sigma_{\rm inel, \rm B}} \left[\exp\left(\frac{\sigma_{\rm inel, \rm C} - \sigma_{\rm inel, \rm B}}{m_p} X\right) - 1 \right]$$

$$\sigma_{\rm C,inel} \sim 250 \text{ mb}$$

 $\sigma_{\rm B,inel} \sim 220 \text{ mb}$
 $\sigma_{\rm C \rightarrow B} \sim 80 \text{ mb}$

Gramage

The Leaky Box Model

CRs spend a significant time outside the Galactic disc!

Modeling Cosmic-Ray Propagation

Modeling Cosmic-Ray Propagation

$$\begin{aligned}
\vec{J} = -D\vec{\nabla}\phi \\
\vec{J}_{1}\phi = -\vec{\nabla}\cdot\vec{J}
\end{aligned}$$

Modeling Cosmic-Ray Propagation

DM limit for DM annihilation — Wino

